Tuesday, January 28, 2020

Journal Entry for Stephen Crane’s, An Episode of War Essay Example for Free

Journal Entry for Stephen Crane’s, An Episode of War Essay This short piece of American literature is a descriptive prose depicting a scene in the American Civil War. An unnamed lieutenant is wounded at his right arm while resting with the rest of his troops during an active battle. The story enables the readers to take part on the lieutenant’s perceptions on what is happening and how the battle was shaped and he is a participant or a victim of a battle unknown to him. The battle is fierce and tumultuous; it was able to take the innocent lives and anything on its way. All of this thinking happened while the lieutenant passed the line of the battle, while he was in search of the field hospital.  At the hospital, the wounded officer had a brief and unpleasant encounter with a surgeon who is rude and lied to him, saying that his arm will not be amputated. The story was able to envelop the soft and meek side of an army officer in a few lines of dialogue of having his right arm amputated. In the end, the lieutenant went along with the surgeon for a medical procedure but end up losing his arm. The army officer felt ashamed when he got home to his family and showing an empty sleeve. He was a victim of a war that could have been avoided and he will not have to lose his arm.

Monday, January 20, 2020

Coral Bleaching: Potential Mechanisms and Observed Adaptations :: Sea Coral Corals Ecosystem Papers

Coral Bleaching: Potential Mechanisms and Observed Adaptations Coral reefs are the most biologically diverse marine ecosystems. Driving this diversity are cnidarian corals which are obligate mutualistic symbioses between coral animals and dinoflagellate algae of the genus symbiodinium. These algae are commonly called zooxanthellae. This symbiosis between heterotrophic hosts and photosynthetic symbionts allows coral to thrive in nutrient poor seas and deposit calcium carbonate to build reefs (Toller et al. 2001, 348). Coral bleaching occurs when there is a loss of zooxanthellae from their coral host. This is accompanied by loss of a coral's normal color that may or may not be detectable to the human eye. Bleaching can lead to coral death when prolonged, although links between bleaching and subsequent coral recovery or death are not well known. Causes of bleaching have been observed to include salinity, exposure to air, and sedimentation. The primary reasons cited to cause most instances of coral bleaching are increased sea temperatures and solar radiation. These two factors have been observed to cause the most damage in combination (Fitt et al. 2001, 51). The two types of bleaching that result from organism damage or disturbance are algal-stress bleaching and animal-stress bleaching. Algal-stress bleaching is characterized by expulsion of individual zooxanthellae from a host cell. Animal-stress bleaching is characterized by host cell detachment, which is expulsion of zooxanthellae from the coral animal along with the host cell they occupy. Radiation and temperature induced animal-stress bleaching and host cell detachment have not been observed in the field at current sea temperatures. This type of bleaching has only been observed under laboratory conditions (Fitt et al. 2001, 55). A third type of bleaching, physiological bleaching, occurs in an unstressed coral-zooxanthellae holobiont as a method of shedding excess zooxanthellae from host cells. Zooxanthellae density within host cells varies seasonally in this manner. Maximum zooxanthellae density is observed to occur during the coolest season with the lowest solar radiation. The minimum density is observed to occur at the end of the warmest season with the highest solar radiation (Fitt et al. 2001, 54). The temperature at which coral bleaching occurs has been observed to be from 30 to 34 degrees Celsius (Ralph et al. 2001, 163). Solar radiation exacerbates bleaching in this temperature range and can also cause bleaching at ‘normal’ temperatures when at sufficient intensity.

Sunday, January 12, 2020

Experimental Works on the Effects of Metal Forming Speed

Chapter Four Experimental Plants 4.1 Introduction: This chapter will foreground the experimental work conducted to look into the consequence of metal organizing velocity on the backward-forward combined bulge procedure of polygonal and cylindrical cross subdivision cup saloon form components.. Subsequently, an rating of the extrude specimens has been done to analyze the influence of the procedure on the emphasis distribution in lead specimens. The experimental process consisted of the followers: –Material choice for bulge dice, clouts and workpiece readying.Found. The chemical composings workpiece and for dice, cloutsDesign and fabrication of dice of the backward-forward bulge and typesof Pistons used.Determination of the backward-forward bulge parametric quantities.Execution of the backward-forward bulge procedure.4.2 Materials. 4.2.1 Choice of the work-piece: – The note stuff used in this survey for bulge procedure is ( 99.99 % ) commercially pure lead and its chemical composing listed in Table ( 4.3 ) . Lead can be used as a theoretical account for a figure of metals at different strain rates and temperatures because of similarities in footings of Stress-Strain curves. This is utile in the survey of flow metal in the forming procedure. Equally good as its ability to re-crystallization at room temperature its composing is similar to the hot forming procedure for steel which leads to the absence of strain hardening in this metal. Lord has yielded emphasis, which varies in sum between ( 6-8 MPa ) and the temperature runing point is ( 327 Â °C ) [ 10. Lead is a extremely dense, corrosion opposition and really soft ductile stuff. As shown in figure ( 4-1 ) , A grid has been printed in the forepart of the as shown in figure ( 4-2 ) . Tip for mensurating the supplantings of each point after distortion by the burden required for bulge. Figure ( 4-1 ) : the pure leadFigure ( 4-2 ) : he pure lead Before printed grid printed grid Properties of lead in item are given in table 4.1.The thermic belongingss of pure lead 99 % are as shown. Table 4.1Mechanical belongingss of lead from the documentsMechanical belongingssstatusDensity11300 kg/m3298.15 KYoungaˆYs Modulus of Elasticity16000MPaPoisson Ratio0.44Thermal Expansion Coefficient29e-6298.15 KTable 4.2 Thermal Properties from the documents 4.2.2 Determination of stuff belongingss In the present probe pure Lead ( 99 % pure ) is used as work stuff. Different belongingss of lead stuff like flow emphasis, clash factor, etc. are determined utilizing different compaction method. These belongingss are used in upper edge simulation utilizing FORTARN90. In compaction trial, a big sum of distortion can be achieved before break. 4.2.3 Compression trial This is the simplest compaction trials in which a cylinder compressed axially between smooth platens. This gives the same output emphasis at a tensile trial with little strains when home bases are good lubricated. Friction coefficient at the die face additions as the strain addition a specimen spreads out. From compaction trial we flow emphasis of the stuff can be determined. A lead solid cylinders with two halves 40mm diameter and 70mm length is compressed between good lubricated smooth home bases every bit good as in dry status to find the clash coefficient in greased and dry status both. Due to flux of material diameter additions as length lessenings. By turning operation excess stuff removed to acquire initial diameter. The trial is repeated three times and mean true emphasis vs. true strain graph is plotted from unit of ammunition note with cosine and taper dice are besides discussed in this subdivision. Specimens chemical composing proving 4.2.4 Chemical composing of the metal. The metal, which is used in this survey, is ( 99.99 % ) commercially pure lead. The chemical composings of this stuff as shown in listed in Fig 4.3which is found in the computing machine –controlled Iraqi Ministry of Industry and Minerals The State Company for Inspection & A ; Engineering, Rehabilitation ( SIER ) & A ; BY Central Organization for standardisation and Quality Control as shown in listed in fig 4.4 Fig.4.3 the list of concentrations of elements found within the pure lead specimen Fig.4.4 the list of concentrations of elements found within the pure lead specimen. 4.3 Application of Grid The grid can be applied to the specimens by the followers: –Hand composing or scribing: The grids can be made on the specimens by manus or can be scribed by a crisp pointed acerate leaf. To cipher the strains in the specimen at all points each component of the grid will hold to be measured before and after striving. This method can be used for comparatively soft crystalline stuff like plastics.Machine scribing: Grid can be scribed by machine utilizing governing engines for level and cylindrical surfaces. The single elements in the grid may be indistinguishable and measurings need be made merely after striving. Machine scribed grids are used merely when trials are to be carried up to tear.Ink, pulling: Grid can be drawn with ink on theoretical accounts. The thickness of lines should be every bit little as possible to obtain more truth.Rubber togss: For soft, porous stuffs, thin gum elastic togss of 0.2mm diameter can be glued by latex and strain measurings may be made after lad ing.Photo grid method: Grid can be applied photographically by painting a light sensitive emulsion on the surface of the trial specimen, covering the surface with a maestro grid negative, exposing to strong visible radiation, and developing the end point print in the usual mode.4.4 Procedure of work Grid method is one of the methods of strain analysis, which is whole field in nature. In order to find supplantings and strain constituents at given points of randomly shaped surfaces a grid can be engraved on the surface to be studied. This grid acts as a mention component and the alterations that the grid experiences from the undeformed to the distorted conditions can be utilized to find either supplantings or strains. Two troubles are encountered which limit the usage of grids for mensurating distortions ; foremost, the strains to be measured are normally really little, and in most instances the supplanting readings are hard to do with sufficient truth. This is peculiarly true in stress analysis. However, this method is really much suitable for the survey of distortion in stuffs. Second, when the exposure of the grid web are magnified by the microscope, the images of the grid lines are normally ill defined presenting appreciable mistakes into the displacement readings. This method has the advantages that a photographic record of distortions covers the full field of the specimen. This record can be obtained for either inactive, dynamic elastic or fictile distortions. The strain was measured straight. The distance between the grid lines on the theoretical account was measured by a microscope by maintaining the magnification of microscope same before and after extruded. However, the tried pure lead specimens exhibit extremely accurate consequences when the little elastic distortion can be ignored and merely fictile distortions are taken into consideration.to implement a grid of a known constellation upon the specimens.a computing machine –controlled CNC machine, which is operated and found in the Iraqi Ministry of Industry and Minerals –Engineering Qualification and Testing Affairs Division, is utilized in fig ( 4.6. ) Fig ( 4.6 ) the Computer –Controlled CNC Machine and, pure lead specimen with grid. 4.4.1 Description of the computer–controlled CNC machine: The grids require some experience to derive in order to manage the computer-controlled CNC machine easy, therefore the device is consisted of the following chief parts 1-The Operation-panel As shown in fig ( 4.7 ) . The operating panel for the computer-controlled CNC is responsible for all the plans ( run by the DOS operating system ) needed to put to death the machining procedure onto the workpiece and for organizing scenes. Fig ( 4.7 ) The Operation-panel 2-Machining tool: As shown in fig ( 4.8 ) , The CNC MACHINE has some jaw where the machining tool can be fixed, and this is directed by utilizing the co-ordinate scenes found in the operation panel in order to get at the needed machining operation. Fig ( 4.8 ) of Machining tool Pure lead specimen requires some surface finish skyline trial to accomplish before grid execution processes a machining tool that is attached to a dial gage holding an truth about 1. The grid method was used to cipher the supplanting in the X-axis ( u ) and in Y–axis ( V ) . The dimensions of the grid were ( 70 mm?40 millimeter ) and the length of the square is ( 2mm ) as shown in figure ( 4-9 ) . Fig ( 4-9 ) the scan of pure lead specimen after The grid was photographed before and after backward-forward bulge of the pure lead specimens and the measurings of the supplantings was taken by microscope so scan it for all the specimens. Then the strains at the surface squares gird were calculated in the specimen the strains in the specimen at all points each component of the grid will hold to be measured before and after striving. Finally, the consequences and different boundary conditions were compared with upper edge solution consequences The grid was photographic before and after the rhythm of the sample and the measurings of the supplantings was taken by microscope for all the samples In add-on to the usage of the plan compared to the knock -dimensional images Photography are taken before and after distortion and compare the consequences with theoretical consequences as shown in fig ( 4.10 ) for some specimens before and after bulge Fig ( 4.10 ) shown The specimens of lead after bulge with hexangular clout Fig ( 4.11 ) shown The specimens after bulge with round cloutFig ( 4.12 ) The some specimens after bulge 4.5 The experimental work: – Experimental surveies are carried out with a position to compare the experimental consequences with the theoretical 1s obtain from proposed method of analysis, and upper edge method are carried out from commercially machine available for bulge of The dice with cone angle of ( 120 ) and polygonal clouts ( hexangular ) .the machine have three regardful velocity to compression the stuff at ( 0.002,0.00 3,0.004 ) m/s which are used in our survey, Three decrease countries of dies ( 30 % , 0.50 % , ) are used a cylindrical and hexangular Piston diameters of 40 millimeters and 30 millimeter as shown Fig ( 4-8 ) , crown out of the metal and a diameter of 25mm,15 millimeters and 10mm slots so have been a rounding each diameters of the Pistons. Experiments are done for both backward-forward bulge procedure. Commercially available lead is used for workpecies experiment when used low metal steel for organizing dice of the backward-forward bulge procedure. An bulge apparatus for laboratory experi mentation is designed and the chief of the of the backward-forward bulge theoretical account, consists of four parts ; viz. , the container holding a round chamber, the squeeze outing clout, bulge dice holder and the back uping block for the assembly. Fig ( 4.13 ) shown hexangular clout and round clout 4.6 Die design and fabrication The sets of backward – frontward bulge dice ( at three different per centum country decrease ( 0.30,0.50 ) % . ) , are employed for experimentation.by two allow diameter dice 15mm, 25mm with bulge procedure lead, and a cylindrical Piston diameters of 40 millimeters and 35 millimeter and 30 millimeters piston hexangular diameters of 40 millimeters and 35 millimeter and 30 millimeter and for present analysis. The inside informations of the bulge dies are presented in Figures ( 4.12 ) & A ; ( 4.13 ) . Fig ( 4-14 ) OF The parts of dice Fig ( 4-15 ) OF The parts of dice Have been utilizing AUTO-CAD plan for die design as shown in fig ( 4-10 ) and so was manufactured by the workshops of the Iraqi Ministry of Industry and Minerals The State Company for Inspection & A ; Engineering, Rehabilitation ( SIER ) utilizing this operating machine and lathe in add-on to making high- preciseness surface about 0.51?m after it has been carry oning minutess Calories appropriate for the templet and before used. Fig ( 4-16 ) dicedesign by AUTO-CAD plan Figure ( 4-17 ) OF The some parts of dice after design Figure ( 4-18 ) OF The some parts of the dice after fabrication and surface coating operations 4.7 Chemical composing of the metal of the dice parts. The metal, which is used in this survey, commercially low metal steel. The chemical composings of this stuff as shown in listed in Fig ( 4.-16 ) which is found in the computing machine –controlled Iraqi Ministry of Industry and Minerals The State Company for Inspection & A ; Engineering Rehabilitation ( SIER ) Figure 4.19 the list of concentrations of elements found within low metal steel used to decease 1

Saturday, January 4, 2020

Archetypes in Frankenstien and the Birthmark - 2001 Words

The novel Frankenstein was written by Mary Shelly in 1818, since then the story has become a classic archetype. The Birthmark by Nathaniel Hawthorne, follows this archetype. Although The Birthmark and Frankenstein are not identical both stories have similar archetypal characters and share similar themes of abused power and redemption. The Frankenstein archetype requires three types of characters: a obsessive, mad scientist, a pure kind feminine presents and a monster, both sympathetic and ruthless. Although the characters from the birthmark are not carbon copies of the characters in Frankenstein they share similar personality traits and experiences. Both works have at least one Madonna like woman who is pure and good through out her†¦show more content†¦Aylmer too is a man of science. Although Aylmer was married to a beautiful he was still completely committed to his science; â€Å"Aylmer appeared to believe that, by the plainest scientific logic, it was altogether within the limits of possibility to discover this long- sought medium.† Hawthorn,342. Soon after his wedding Aylmer became fixated on his wife’s birthmark, so much so that it made him physically sick when he saw it. This fixation combined with an obsessed with the notion of creating miracles led Aylmer to convince his bride to let him remove her birthmark himself: doubt not my power. I have already given this matter the deepest thought--thought which might almost have enlightened me to create a being less perfect than yourself. Georgiana, you have led me deeper than ever into the heart of science. I feel myself fully competent to render this dear cheek as faultless as its fellow; and then, most beloved, what will be my triumph when I shall have corrected what Nature left imperfect in her fairest work! Even Pygmalion, when his sculptured woman assumed life, felt not greater ecstasy than mine will be. Hawthorn 340. Aylmer’s creation, or attempt at creation, causes Georgiana to die in his arms. Both men are noble and good intentioned, but seem to lose all sense of balance. Both men are dedicated to science so much so that they ignore the needs of the loving, beautiful women in their lives. Ultimately it is this unbalance between science